Appears in the Proceedings of the CONALD Workshop on Learning from Text and the Web, June 1998.

Building Intelligent Agents for Web-Based Tasks:
A Theory-Refinement Approach

Jude Shavlik and Tina Eliassi-Rad
University of Wisconsin-Madison
1210 W. Dayton Street
Madison, Wisconsin 53706
{shavlik, eliassi}@cs.wisc.edu
http://www.cs.wisc.edu/~{shavlik, eliassi}

Abstract

We present and evaluate an infrastructure with
which to rapidly and easily build intelligent soft-
ware agents for Web-based tasks. Our design is
centered around two basic functions: SCORETHIS-
Link and SCORETHISPAGE. If given highly ac-
curate such functions, standard heuristic search
would lead to efficient retrieval of useful informa-
tion. Our approach allows users to tailor our sys-
tem’s behavior by providing approximate advice
about the above functions. This advice is mapped
into neural network implementations of the two
functions. Subsequent reinforcements from the
Web (e.g., dead links) and any ratings of retrieved
pages that the user wishes to provide are, respec-
tively, used to refine the link- and page-scoring
functions. Hence, our agent architecture pro-
vides an appealing middle ground between non-
adaptive “agent” programming languages and sys-
tems that solely learn user preferences from the
user’s ratings of pages. We present a case study
where we provide some simple advice and spe-
cialize our general-purpose system into a “home-
page finder”. An empirical study demonstrates
that our approach leads to a more effective home-
page finder than that of a leading commercial Web
search engine.

Introduction

We describe and evaluate an implemented system which
provides a substrate upon which to create intelligent
agents for the Web. Our approach is based on ideas
from the theory-refinement community (Pazzani & Ki-
bler 1992; Ourston & Mooney 1994; Towell & Shavlik
1994). Users specify their personal interests and prefer-
ences using the language we designed for discussing as-
pects of the contents and structure of Web pages. These
instructions are then “compiled” into neural networks,
thereby allowing subsequent refinement whenever train-
ing examples are available. The Wisconsin Adaptive
Web Assistant (WAWA) uses ideas from reinforcement
learning to automatically create its own training ex-
amples, though WAWA can also use any user-provided
training examples. Thus our design has the important
advantage of producing self-tuning agents.

We first describe the WAWA system, then show how
it can easily be instructed to create a home-page finder.
We empirically study this home-page finder and present
results that support our claim that our version outper-
forms the home-page finder that the search engine HOT-
BoOT provides. Our experiments also demonstrate that
WAWA improves its performance by using the training
examples it automatically generates.

System Description

At the heart of WAWA are two neural networks,
implementing the functions SCORETHISLINK and
SCORETHISPAGE. These functions, respectively, guide
the system’s wandering within the Web and judge the
value of the pages encountered. The user mainly pro-
grams these two functions by providing what we call
advice, which is basically, rules-of-thumb for guiding
Wawa’s wandering and for specifying how it scores
pages. Following (Maclin & Shavlik 1996), we call
our programming language an advice language, as this
name emphasizes that the underlying system does not
blindly follow the user-provided instructions, but in-
stead refines this advice based on the system’s experi-
ences.

Our networks have very large input vectors (i.e., sets
of features), since that allows us to have an expressive
advice language; each user’s personal advice essentially
focuses attention on only a small subset of the features,
thereby making learning feasible. For example, a cancer
researcher or a stock analyst can express their particu-
lar interests in our advice language, then have WAwWA
regularly monitor relevant Web sites for new articles
about their interests.

We envision that there are two types of potential
users of our system: (a) developers who build an in-
telligent agent on top of Wawa and (b) people who use
the resulting agent. When we use the phrase user in
this article, we mean the former case. Both types of
users can provide advice to the underlying neural net-
works, but we imagine that usually the type B users
will indirectly do this through some specialized inter-
face that the type A user creates. A scenario like this
will be seen in our experimental section.

Table 1 provides a high-level description of WAWA.

First, its initial neural networks need to be created (or
read from disk should this be a resumption of a pre-
vious session). One can view the process of convert-
ing user-provided advice into neural networks as anal-
ogous to compiling a traditional program into machine
code, but our system instead compiles instructions into
an intermediate language expressed using neural net-
works. This provides the important advantage that our
“machine code” can automatically be refined based on
feedback provided by either the user or the Web.

Table 1: The WAWA Algorithm

Unless they have been saved to disk in a
previous session, create the ScoreLink and
ScorePage neural networks by reading the
user’s initial advice (if any).

Either (a) start by adding user-provided URLs
to the search queue; or
(b) initialize the search queue with URLs
that will query the user’s chosen
set of Web search engine sites.

Execute the following concurrent processes.

Independent Process #1
While the search queue is not empty nor the
maximum number of URLS visited,

Let URLtoVisit = pop(search queue).
Fetch URLtoVisit.

Evaluate U RLtoVisit using ScorePage network.
If score is high enough, insert U RLtoVisit

into the sorted list of best pages found.
Use the score of URLtoVisit to improve

the predictions of the ScoreLink network.

Evaluate the hyperlinks in U RLtoVisit
using ScoreLink network (however, only
score those links that have not yet been
followed this session).

Insert these new URLs into the (sorted) search
queue if they fit within its max-length bound.

Independent Process #2
Whenever the user provides additional advice,
insert it into the appropriate neural network.

Independent Process #3

Whenever the person rates a fetched page,
use this rating to create a training example
for the ScorePage neural network.

The basic operation of WAWA is heuristic search, with
our SCORELINK function providing the sorting heuris-
tic. Rather than solely finding one goal node, though,
we collect the 100 pages that SCOREPAGE rates highest.

The user can choose to seed the queue of pages to fetch
in two ways: either by specifying a set of starting URLs
or by providing a simple query that WAWA converts
into “query” URLS that are sent to a user-chosen subset
of selectable search engine sites (currently AltaVista,
Excite, InfoSeek, Lycos, and Yahoo).

Although not mentioned in Table 1, the user may also
specify a depth limit that puts an upper bound on the
distance the system will wander from the initial URLSs.

Before fetching a page (other than those initially in
the queue), WAWA had predicted the value of fetching
the page, based on the contents of the “referring” page
that linked to it. After fetching and analyzing the text,
the system will have a better estimate of the page’s
value to the user. Any differences between the “before”
and “after” estimates constitute a temporal difference
(Sutton 1988) error that can be used by backpropa-
gation (BP)(Rumelhart, Hinton, & Williams 1986) to
improve the SCORELINK neural network (see (Shavlik
& Eliassi-Rad 1998) for further details).

In addition to the above system-internal method of
automatically creating training examples, the user can
improve the SCOREPAGE and SCORELINK neural net-
works in two ways. One, the user can provide additional
advice. Observing the system’s behavior is likely to in-
voke thoughts of good additional instructions. WAwA
can accept new advice and augment its neural net-
works at any time. It simply adds to a network ad-
ditional hidden units that represent the compiled ad-
vice, a technique whose effectiveness was demonstrated
(Maclin & Shavlik 1996) on several tasks. Providing ad-
ditional hints can rapidly and drastically improve the
performance of WAwWA, provided the advice is relevant.
(In this paper’s experiments we do not evaluate incre-
mental provision of advice, though (Maclin & Shavlik
1996) have done so on their testbeds. They also showed
that their algorithm is robust when given “bad” advice,
quickly learning to ignore it.)

Although more tedious, the user can also rate pages
as a mechanism for providing training examples for use
by BP. This can be useful when the user is unable
to articulate why the system is misscoring pages and
links, but is able to provide better scores. This stan-
dard learning-from-labeled-examples methodology has
been previously investigated by other researchers, e.g.,
(Pazzani, Muramatsu, & Billsus 1996), and we will not
further discuss this aspect of WAWA in this article. We
do conjecture, though, that most of the improvement
to WAWA’s neural networks, especially to SCOREPAGE,
will result from users providing advice. In our personal
experience, it is easy to think of simple advice that
would require a large number of labeled examples in
order to learn purely inductively. Empirical support
for these claims is a topic of experiments in progress.

WawA’s use of neural networks means we need a
mechanism for processing arbitrarily long Web pages
with fixed-sized input vectors. We borrow an idea from
NETTALK (Sejnowski & Rosenberg 1987), though our
basic unit is a word rather than an (alphabetic) letter

as in NETTALK. WAWA slides a fixed-sized window
across a page, and most of the features we use to rep-
resent a page are defined with respect to the current
center of this window. We define the score of a page to
be the highest score the SCOREPAGE network produces
as it is slid across the page. The value of a hyperlink is
computed similarly, but WAWA only slides the SCORE-
LINK network over the hypertext associated with that
hyperlink. However, in this case the window starts by
being centered on the first word in the hypertext, which
means the nearby words outside of the hypertext will
sometimes fill some of the window positions.

An Overview of WAWA'’s Advice Language

We next turn to how WAWA represents Web pages and
the constructs of its advice language. The input fea-
tures it extracts (from either HTML or plain text) con-
stitute the primitives in our advice language. Following
our description of the basic features, we briefly discuss
the more complicated language constructs created from
the basic ones.

Extracting Features from Web Pages. A stan-
dard representation of text used in information retrieval
is the vector-space model (Salton 1991) (or the bag-of-
words representation). The left side of Fig. 1 illustrates
this representation. Basically, word order is lost and all
that is used is a vector that records the words present
on the page, usually scaled according to the number of
occurrences and other properties (e.g., TFIDF (Salton
1991)).

Typically, information retrieval systems also discard
common (“stop”) words and “stem” all words to their
root form (e.g., “walked” and “walking” both become
“walk”) (Salton 1991). Doing so greatly reduces the
dimensionality of the problem. WAwA performs these
two preprocessing steps.

Instead of solely using the bag-of-words model, we use
a richer representation that preserves some word-order
information. We also take advantage of the structure of
HTML documents when a fetched page is so formatted.
First, as partially shown by the first two lines of Table 2,
we augment the bag-of-words model, by using several
localized bags, some of which are illustrated on the right
side of Fig. 1. Besides a bag for all the words on the
page, we have word bags for: the title, the page’s URL,
the window, the left and right-sides of the window, the
current hyperlink should the window be inside hyper-
text, and the current section’s title. (Our parser of Web
pages records the “parent” title of each word; parent’s
of words are indicated by the standard (H1) through
(H6) constructs of HTML, as well as other indicators
such as table captions and table-column headings. Ac-
tually, we also have bags for the words in the grandpar-
ent and great-grandparent sections, should the current
window be nested that deeply.)

(Before continuing, a word of clarification is in order.
A Web page has its own URL, while there are also URLs
within the page’s contents. We refer to the former as

Original Web Page

URL: www.page.com
Title: A Sample Page

This space
for rent.

Stop
Words
Removal
and Stemming
\ 4
URL: www.page.com|

Title: Sample Page Sliding

Window

|

\

\

\

| s

| “Mmpje peé’e
l words 1n title
|

\

|

\

|

7
) (a WWW rent
S0 pagef | oace
R &‘?1)2 COdm words in
words i
www Ll URL window
Standard Aspects of Our
Approach Representation

Figure 1: Internally Representing Web Pages

Table 2: Sample Extracted Input Features
anywhereOnPage ((word))
anywhereInTitle ({word))

isNthWordInTitle ({N), (word))
isNthWordFromENDofTitle ((INV), (word))
NthFromENDofURLhostname ({N}, {word))

leftNwordInWindow ({N), (word))
centerWordInWindow ((word))

number0fWordsInTitle()
numberOfAdviceWordsInTitle()

insideEmphasizedText ()
timePageWasLastModified ()

wrl and the later cases as hyperlinks, in an attempt to

reduce confusion.)

In addition to these word bags, we also represent
several fixed positions. Besides the obvious case of
the positions in the sliding window, we represent the
first and last N words (for some fixed N) in the ti-
tle, the URL, the section titles, etc. Due to its im-
portant role in the Web, we also specially represent
the last N fields (i.e., delimited by dots) in the server
portion of URLs and hyperlinks, e.g. www aaai org in
http://www.aaai.org/aaai98/papers.html.

Thus, we use many Boolean-valued features to
represent a Web page, ranging from anywhereOn-
Page(aardvark) to anywhereOnPage(zebra) to right-
NwordInWindow(8, AAAI) to NthFromENDofURL-
hostname(1, edu). (The current version of WAwA does
not use any TFIDF methods, due to the manner we
compile advice into neural networks.)

Our design leads to a larger number of input features,
assuming a typical vocabulary of tens of thousands of
words, on the order of a million! However, we sparsely
represent these input vectors by only recording those
features whose value is “true,” taking advantage of an
important aspect of neural networks. Specifically, if we
represent absent words by zero (and we do), then these
zero-valued input features play no role in the forward-
propagation phase of neural networks, since weighted
sums are used, nor on the BP step, due to the partial
derivatives involved.

Beside the input features related to words and their
positions on the page, WAWA’s input vector also in-
cludes various other features, such as the length of the
page, the date the page was created (should the page’s
server provide that info), whether the window is inside
emphasized HTML text, the sizes of the various word
bags, how many words mentioned in advice are present
in the various bags, etc.

One might ask how a learning system can hope to
do well in such a large space of input features. Deal-
ing with this many input features would indeed be in-
feasible if WAWA solely learned from labeled examples.
Fortunately, as we shall see, our use of advice means
that users indirectly select a subset feature space from
this huge implicit input vector. Namely, they indirectly
select those features that involve the words appearing
in the their advice. (The full input space is still there,
but the weights out of input features used in advice
have high values, while all other weights have values
near zero. Thus, there is the potential for words not
mentioned in advice to impact the networks’ output,
following much BP training.)

WAWA’s Complex Predicates. Table 3 contains
some of the more complicated predicates that WAWA
defines in terms of the basic input features. Some of the
advice used in our home-page finder experiment appears
in this table. (The anyof() construct used in the table
is satisfied when any of the listed words is present.)
Our basic instruction says that under some condi-
tions, either increase or decrease the output of one or

Table 3: Sample Advice
(1) WHEN consecutiveInTitle(
any0f (Joseph Joe J.)
Smith’s home page)
STRONGLY SUGGEST SHOWING PAGE
(2) WHEN hyperlinkEndsWith(
anyO0f (Joseph Joe Smith jsmith) /
any0f (Joseph Joe Smith jsmith
index home homepage my me)
anyOf (htm html /))
STRONGLY SUGGEST FOLLOWING LINK
(3) WHEN NOT (anywhereOnPage (Smith))
STRONGLY SUGGEST AVOID SHOWING PAGE

both of WAWA’s neural networks. We will use the first
entry in Table 3 to also illustrate how advice is mapped
into a neural network. Assume we are seeking Joseph
Smith’s home page. The intent of rule 1 is as follows.
When the system is sliding the window across the page’s
title, it should look for any of the plausible variants
of this person’s first name, followed by his last name,
followed by apostrophe s, and then the phrase “home
page.” When these conditions are met, then a large
weighted sum should be sent to the output unit of the
SCOREPAGE network.

This is accomplished using a variant of the KBANN
algorithm (Towell & Shavlik 1994). Rule 1 in Table 3
compiles to five positions (apostrophe-s is treated as a
separate word) in the sliding window, along with the
constraint that the insideT'itle predicate be true (i.e.,
have an activation value of 1). WAWA then connects the
referenced input units to a newly created hidden unit,
using weights of value 5. Next, WAWA sets the bias
(i.e., threshold) of the new hidden unit, which has a
sigmoidal activation function, such that all the required
predicates must be true in order for the weighted sum
of its inputs to exceed the bias (27.5) and produce an
activation of the hidden unit near 1. (Some additional
zero-weighted links are also added to this new hidden
unit, to further allow subsequent learning, as is stan-
dard in KBANN.)

Finally, WAWA links the hidden unit into the output
unit with a weight determined by the strength given
in the rule’s consequent. WAWA interprets the phrase
“suggest showing page” as “increase the page’s score.”

Unshown variants of rule 1 that we use in our case
study allow for the possibility of Smith having a mid-
dle name or initial on his home page, by using WAWA’s
(single-word) “wildcard” symbol, and the possibility his
home-page’s title is of the form “home page of”
Rule 2 shows another useful piece of advice for home-
page finding. This one gets compiled into the Nth-
FromENDofHyperlink() input features, which are true
when the specified word is the Nth one from the end
of the current hyperlink. When there is a match, the
weighted sum into the SCORELINK is increased sub-
stantially. (Note that WAWA treats the ’/’ in URLs as

a separate word.) Rule 3 shows that advice can also
specify when not to follow a link or show a page; nega-
tions and AVOID instructions become negative weights
in the neural networks.

Experiments

This section presents a case study that illustrates the
effectiveness and ease of creating a specialized agent on
top of the general-purpose WAWA system for a Web-
based task. We chose a task already in the literature:
creating a home-page finder (Shakes, Langheinrich, &
Etzioni 1997). Their AHOY! system uses a technique
called Dynamic Reference Sifting, which filters the out-
put of several Web indices and generates new guesses
for URLS’ when no promising candidates are found.

We wrote a simple interface layered on top of WAwWA
that asks for whatever relevant information is known
about the person whose home page is being sought:
first name, possible nicknames, middle name or initial,
last name, miscellaneous phrases, and a partial URL
(e.g., edu or ibm.com). We then wrote a short pro-
gram that reads these fields and creates advice that is
sent to WAwA. We also wrote 76 general advice rules
related to home-page finding, many of which are slight
variants of others (e.g., with and without middle names
or initials). Specializing WAWA for this task and cre-
ating the initial general advice took only one day, plus
we spent parts of another 2-3 days tinkering with the
advice using the “training set” we describe below.

Some technical comments are needed to fully under-
stand the details of the following experiments. First,
users can retract advice from WAWA’s neural networks.
Thus, new advice is added and the old erased for each
request to find a home page. However, one would
also like to learn something in general about home-
page finding. This is accomplished via a crude vari-
able binding mechanism. WAWA accepts instructions
that certain words should be bound to SpecialW ordy,
and its input vectors contain the Boolean-valued fields
specialWordNisInWindowPositionM. We thus as-
sign the query person’s first name to SpecialWords,
alternate first names (if any) to SpecialWord, and
Special W ords, etc. Then we can write general-purpose
advice about home-page finding that uses these new
Boolean-valued features (hence, rule 1 in Table 3 is ac-
tually written using the SpecialWordy markers and
not the names of specific people).

Motivation and Methodology

We randomly selected 100 people from Aha’s list of
machine learning and case-based reasoning researchers
(www.aic.nrl.navy.mil/~aha/people.html) to run
experiments that evaluate WAWA; to reduce the com-
putational load of our experiments, we limited this to
people in the United States. Out of the 100 people se-
lected, we randomly picked 50 of them to train WAwA
and used the remaining 50 as our test set. By “train-
ing” we mean here that we manually ran the system

on these train-set people, manually tinkering our ad-
vice before “freezing” the advice and evaluating on the
testset. We did not do any BP-based training with the
training set.

To judge WAWA’s performance in the task of finding
home-pages, we provide it with the advice discussed
above. It is important to note that we intentionally did
not provide any advice that is specific to ML, CBR, Al
research, etc. WAWA has several options which effect its
performance-both in the amount of execution time and
the accuracy of its results. We chose small numbers for
our parameters, using 105 for the maximum number of
pages fetched (which includes the five queries initially
sent off to search engines), and 3 as the maximum dis-
tance to travel away from the pages returned by the
search engines.

We start WAWA by providing it the person’s name
as given on Aha’s Web page, though we partially stan-
dardized our examples by using all common variants of
first names. (e.g., “Joseph” and “Joe”). WAwA then
converts the name into an initial query (see the next
paragraph) which is sent to the five search engines men-
tioned earlier.

We compare the performance of WAWA with the per-
formances of AHOY! and HoTBoOT, a search engine
not used by WAwA and the one that performed best in
the home-page experiments of (Shakes, Langheinrich,
& Etzioni 1997). We provided the names in our test-
set to AHOY! via its Web interface. We ran HoTBoT
under two different conditions. The first setting per-
forms a specialized HOTBOT search for people; we use
the name given on Aha’s page for these queries. In
the second variant we provide HOTBOT with a general-
purpose disjunctive query, which contains the person’s
last name as a required word, all the likely variants of
the person’s first name, and the words “home page”,
homepage, and home-page. The latter is the same query
that WAWA initially sends to its five search engines. For
our experiments, we only look at the first 100 pages
HoTBOT returns, under the assumption that few peo-
ple would look further into the results returned by a
search engine.

Since people often have different links to their home
pages, rather than comparing URLs to those provided on
Aha’s page, we instead do an exact comparison on the
contents of fetched pages to the contents of the page
linked to Aha’s page. Also, when running WAWA we
never fetched any URLs whose server matched that of
Aha’s page, thereby preventing WAWA from using Aha’s
page.

The only BP learning WAWA performs in these exper-
iments is that of refining the SCORELINKS function, by
automatically creating training examples via temporal-
difference learning, as discussed above. We also ran an
experimental control where we did no BP’ing.

Results and Discussion

Table 4 lists our results. Besides reporting the percent-
age of the 50 testset home-pages found, we report the

average ordinal position (rank) given a page is found,
since WAWA, AHOY!, and HOTBOT all return sorted
lists. These results provide strong evidence that the
version of WAWA, specialized into a home-page finder
by adding simple advice, produces a better home-page
finder than does the proprietary people-finder created
by HoTBoT; with 95% probability, we can say that
WaAWwA’s accuracy on this testset is between 69% and
91%. The differences between the first and third rows
also suggests that temporal-differencing, BP-refinement
of SCORELINKS is effective. Our results also suggest
that WAWA performs better than AHOY!, but this dif-
ference is not significant at the 95% confidence level.

One cost of using our approach is that we fetch and
analyze many Web pages, which takes longer. We have
not focused on speed in this study, ignoring such ques-
tions as how well we can do fetching only the first NV
characters of Web pages, only using the capsule sum-
maries search engines return, etc. One relevant statistic
we do have is that, given WAWA finds a home page, on
average it is the ninth page fetched.

Table 4: Empirical Results

System % Found | Mean Rank
Wawa with BP 80% 1.2
Anov! 74% 1.5
Wawa without BP 70% 1.3
H’BOT person search 66% 12.0
HoTBOT general 44% 15.4

Related Work

Like WaAwA, Syskill and Webert (Pazzani, Muramatsu,
& Billsus 1996), and WebWatcher (Joachims, Freitag,
& Mitchell 1997) are Web agents that use machine
learning techniques. They, respectively, use a Bayesian
classifier and an RL-TFIDF hybrid to learn. Unlike
WawaA, these systems are unable to accept (and refine)
advice, which usually is simple to provide and can lead
to better learning that rating or manually visiting many
Web pages.

Current and Future Work

We plan to further validate our claim of having ap-
pealing Web-based middleware by creating additional
testbeds, such as a personalized (and adaptive) elec-
tronic newspaper or email filter. Finally, we plan to con-
tinue to expand our advice language and to build into
WawA the ability to use information about synonyms
(e.g., WORDNET (Miller 1995)) and other knowledge
about text. We would also like to add the capability of
automatically creating plausible training examples by
observing the actions made by users during their ordi-
nary use of WAWA.

Conclusion

We present and evaluate the WAWA system, which pro-
vides an appealing approach for creating intelligent
agents for the Web. A central aspect of our design
is that a theory-refinement system is at the core. This
means that the agents built on top of WAwA will be
(self) adaptive. It also means that users (both types A
and B defined above) may tailor the resulting agents to
match their personal preferences by rating the informa-
tion retrieved. We argue that a promising way to create
useful software agents is to involve both the ability to
do direct programming (e.g., provide a set of approx-
imate rules) as well as the ability to accept (or auto-
matically create) training examples. Due to the largely
unstructured nature and the size of the Web, such a hy-
brid approach is more appealing than ones solely based
on non-adaptive programming languages or relying on
users to rate a large number of Web pages. The case
study we presented supports our claim.

References
Joachims, T.; Freitag, D.; and Mitchell, T. 1997. Web-
watcher: A tour guide for the World Wide Web. In
Proc. IJCAI-97.
Maclin, R., and Shavlik, J. 1996. Creating advice-
taking reinforcement learners. Machine Learning
22:251-281.
Miller, G. 1995. WordNet: A lexical database for
English. Communications of the ACM 38:39-41.
Ourston, D., and Mooney, R. 1994. Theory refinement:
Combining analytical and empirical methods. Artif.
Intel. 66:273-309.
Pazzani, M., and Kibler, D. 1992. The utility of knowl-
edge in inductive learning. Machine Learning 9:57-94.
Pazzani, M.; Muramatsu, J.; and Billsus, D. 1996.
Identifying interesting web sites. In Proc. AAAI-96.
Rumelhart, D.; Hinton, G.; and Williams, R. 1986.
Learning representations by back-propagating errors.
Nature 323:533-536.
Salton, G. 1991. Developments in automatic text re-
trieval. Science 253:974-979.
Sejnowski, T., and Rosenberg, C. 1987. Parallel net-
works that learn to pronounce English text. Complez
Systems 1:145-168.
Shakes, J.; Langheinrich, M.; and Etzioni, O. 1997.
Dynamic reference sifting: A case study in the home-
page domain. In Proc. of the Sixth International World
Wide Web Conference, 189—-200.
Shavlik, J., and Eliassi-Rad, T. 1998. Intelligent
agents for Web-based tasks: An advice-taking ap-
proach. In AAAI/ICML Workshop on Learning for
Text Categorization.
Sutton, R. 1988. Learning to predict by the methods
of temporal differences. Machine Learning 3:9-44.
Towell, G., and Shavlik, J. 1994. Knowledge-based
artificial neural networks. Artif. Intel. 70:119-165.

